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Clifford Algebra and the Propagation of K/ihler 
Spinors 

W a t h e k  Talebaoui  1 

Received May 11, 1994 

The K~le r  equation for an inhomogeneous differential form is analyzed in some 
detail and expressed in a set of coordinates called Riemann normal coordinates. 
A class of solutions to the K~ihler spinors is constructed. It is shown how we 
can perturbatively decouple the Kahler equation and write its solution as a 
sum of spinors by considering the isomorphism between Clifford and the total 
matrix algebras. 

1. INTRODUCTION 

It is well known that the general theory of relativity predicts that gravita- 
tion manifests itself as a curvature of space-time. This curvature is character- 
ized by the Riemann tensor Rj~. Parker (1980; Parker and Pimentel, 1982) 
showed how the curvature of space-time at the position of an atom affects 
its spectrum. The frequency shifts caused by the curvature are different for 
various spectral lines, and in the Schwarzschild geometry the level spacing 
of the gravitational effect is different from that of the well-known first-order 
(degenerate) Stark and Zeeman effects. Manasse and Misner (1963) have 
studied the problem of two bodies in general relativity, in which one of the 
bodies is of small mass and, under the influence of gravitational attraction, 
moves toward a much larger mass whose field produces deformations in the 
geometry of the small one. The Manasse and Misner analysis of this problem 
is obtained from the metric of the background field, and is expressed in a 
set of comoving coordinates, called Fermi normal coordinates. 

Recently, there has been some interest in using Clifford algebra in 
physics, one of the most well-known applications of this algebra being in 
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the Dirac equation. The quantum field theory of free massive Dirac spin-l/2 
particles has been obtained (Cho et al., 1990) by using the method of two 
successive Clifford algebra constructions. The applications of the Clifford 
algebra involving spinors and in particular Dirac spinors have also been 
studied (Crawford, 1991). 

With the incorporation of gravitational interactions (Modanese, 1992; 
Manko and Sibgatullin, 1992; Fradkin and Shvartsman, 1992) with other 
fields it became necessary to sharpen the notion of a spinor considerably 
since the gravitational effects according to Einstein were attributed to a nonflat 
space-time manifold. Such a manifold is said to carry a spinor structure 
(Hitchin, 1974; Chevalley, 1954; Penrose and Rindler, 1987) if the bundle 
of orthonormal frames with Lorentz structure group can be globally lifted 
into a bundle of spinor frames carrying a structure group that covers the 
Lorentz group. 

In this paper we are mainly interested in studying the K~ihler field 
equation (Kfihler, 1962) and examine the propagation of its spinors using 
Riemann normal coordinates (RNC). The advantages of using such coordi- 
nates come from the fact that the connection coefficients F~p vanish at a 
point, while the essential part in constructing RNC is that the higher deriva- 
tives of the connection coefficients do not vanish at that particular point, 
thereby simplifying the computations of Riemann tensor, Einstein equations, 
etc. In this work we have found that writing the Kahler equation in terms of 
RNC makes it possible for us to perturbatively decouple this equation and 
expand its solution as a power series in the geodesic distance. This in turn 
will enable us to study the individual propagation of the K~ihler spinors in 
curved space-time. 

The K~ihler equation for an inhomogeneous differential form, that is, a 
general element of the exterior algebra generated by a basis for the cotangent 
space of the space-time manifold (M), offers in Minkowski space an alterna- 
tive description of half-integral spin to that provided by the conventional 
formulation of the Dirac equation. Apart from a penetrating paper by Graf 
(1978), this equation remained dormant until around 1982, when it was 
simultaneously taken up by a number of authors. Many were interested in 
using it to describe fermions on a lattice (Becher and Joos, 1982; Rabin, 
1982; Banks et al., 1982). The properties of the K~ihler equation as a quantum 
field theory have been examined (Benn and Tucker, 1983). Fundamental 
questions like Lorentz invariance, electromagnetic coupling, breaking of 
degeneracy, and quantization have been discussed (Basarab-Horwath and 
Tucker, 1986). Recently, we have examined the local and global dynamics 
of the K~ihler field equation and an algebraic spinorial solution to this equation 
lying in a minimal left ideal characterized by a certain idempotent projector 
has been analyzed (Talebaoui, 1993, 1994). In Minkowski space-time this 
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equation decouples into four minimal left ideals of the space-time Clifford 
algebra, and it is equivalent to four identical Dirac equations. On the other 
hand, the K~ihler equation might be more appropriate when discussing spinor 
fields and their relation to gravitation. 

The vector space isomorphism between the exterior and Clifford algebras 
has been observed and exploited (Salingaros and Dresden, 1979; Salingaros, 
1982; Budinich and Dabrowski, 1985; Ablamowicz and Salingaros, 1985; 
Ablamowicz et aL, 1982) by many physicists since the work of Chevalley. 
When the Clifford algebra is associated with a metric on a (pseudo-) Rieman- 
nian manifold, one may construct a useful calculus for the study of physical 
field theories involving gravitation. In this paper we shall exploit the isomor- 
phism (Brihaye et al., 1992; Finkelstein and Rodriguez, 1986; Kawamoto 
and Watabiki, 1992; Maia et al., 1990) between the real Clifford algebra 
C3,! (R) and the total matrix algebra M4, i.e., the algebra of 4 x 4 real matrices, 
and expand the K ~ l e r  field in a matrix basis. Also, we will show how one 
can perturbatively decouple the K~ihler equation and write its solution as a 
sum of algebraic spinors (e lements  o f  m in imal  left  ideal ) .  

2. RIEMANNIAN NORMAL COORDINATES 

In curved space-time one can never find a coordinate system with the 
coefficients F~p = 0 everywhere (p., v, p = 0, 1, 2, 3). But one can always 
choose a coordinate system x ~ so that at any chosen space-time event, F~o 
= 0. A very special and useful realization of such coordinates is a Riemannian 
normal coordinates system (Eisenhart, 1949; Dolgov and Khriplovich, 1983; 
Ni and Zimmerman, 1978; Kobayashi and Nomizu, 1963, 1969). 

By a RNC system at x of a Riemannian manifold M, we mean a RNC 
system x ~ . . . . .  x" at x such that a/Ox ~ . . . . .  O / a X  n form an orthonormal frame 
at x. However, a/ax 1 . . . . .  a/ax n may not be orthonormal at other points. 

Let us now introduce the coordinate system (~0, ~ ,  ~2, ~3; t) by 

x ~ = ~ t  (1) 

~ .  = - X  (2)  

k could take the value _+ 1 or 0, and t is the geodesic distance. The duals X,  
to the orthonormal 1-forms in RNC are given by (Talebaoui, n.d.) 

0 
Xo = x~~ ~,r ~ - T x~'~ a~---s and a ( + t x ~ n C s )  a x~ = -x~ s ~ + ,arts a~,~ 

(3) 
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where n, s = 1, 2, 3. Using (3), we obtain 

h 
x~176 = - 7  (~): 

6 ~ 
Xo(6n) = - - - -  ~ n  

t 

x 6o~. 
x"(~~ = 7 

1 (8,~ ~ Xn(~S) = t + M-6 s) 

h 
dg~162176 = - t  (~)~ 

x 606. d6~ = 7 

x 6o~. 
d~n(x~ = - t  

1 (~.~ 
d~n(Xs) = t + X6n~s) 

(4) 

where ~z _ (61)2 + (62)2 + (63)2. Equations (3) and (4) are essential in our 

forthcoming calculations. 

3. THE K.~,HLER EQUATION 

The idea that differential forms can be used to describe fermions follows 
from a suggestion due to K~ler. He studied the general inhomogeneous 
differential form on space-time and used a correspondence between Clifford 
and exterior algebras associated with space-time to describe particles with 
half-integer spin by means of sections of the exterior bundle over space-time 
(inhomogeneous differential forms). K~ler ' s  equation requires the use of 
inhomogeneous differential forms, whereas familiar theories of bosons, for 
example, the Maxwell or Klein-Gordon theories, require only homogeneous 
p-forms. This equation for a complex differential form @ on a pseudo- 
Riemannian manifold M and for a free field system is given by (K~ler, 1962) 

dO = m~ (5) 

where d is the K~ihler operator (sometimes called the Hodge--de-Rham opera- 
tor) and is defined by 

d = d - ~ = d - * d *  (6) 

In this paper the theory to be discussed is formulated in terms of differential 
forms on space-time M and intrinsic operations constructed from the maps 
d: AP(M) ---) A p+ I(M) and *: AP(M) ---) A4-p(M), where d denotes the exterior 
derivative, AP(M) is the space of p-forms on M, and * the Hodge map defined 
with respect to the pseudo-Riemannian metric g of TxM, the tangent space 
at the point x of M. Unlike d and 8 separately, r not a homogeneous 
operator on differential forms; whereas d increases the degree of a form by 
one, ~ decreases the degree by one. However, d 2 is homogeneous 
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d 2 = ( d -  8 ) ( d -  8) = - ( d 8  + 8d) (7) 

where d 2 = 8 2 = 0. It is readily checked that the K~hler equation iterates 
to the Klein-Gordon equation, i.e., 

rqqb = m2~ (8) 

where [] =- - ( d 8  + 8d) is the Laplace-Beltrami operator, which preserves 
the degree of a form % AP(M) -+ AP(M). The next task is to make use of 
the isomorphism between Clifford and the exterior algebras, which will enable 
us to write the Kahler equation in a form that could perturbatively decouple 
and expand its solution as a power series in the geodesic distance. 

L e m m a  1. For a torsion-free connection, 

P r o o f "  

d = e ~ A V x ~  

e ~" ^ V x ~ e "  = e p" ^ ~ i " ( X ~ , ) e  ~ 

= e ~ ^ i " ~ / x  O ~ " e  ~ 

= d e  ~ 

where the Levi-Civita orthonormal connection 1-form 12~ ~ is defined by 
V x f  = 

L e m m a  2:  

8 = - i ' ~ V x ~  

P r o o f "  

8 --= *d* 

= ^ Vx *) 

= * 

= i ~ *  qqVx~* 

= - i ~ V x ~  

(from Lemma 1) 

(since **  = -~1 and .q2 = 1) 
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where the involution "q is defined by "qX = - X  if X is a covector. Some of 
the properties (Talebaoui, 1994) of the involution -q are 

"q(c~ A [3) = "q(x A XI[3, "q(a v [3) = ~qc~ v "q[3, Vot, [3 e A(M) (9) 

Here A(M) 4 Up=0 AP(M) is the inhomogeneous differential form. In addition 
to the exterior algebra over A(M), one can define the associative Clifford 
algebra C[A1(M), g] associative with g. If c~, [3 ~ A1(M), then their Clifford 
product denoted by c~ v 13 satisfies 

cx v [3 + [3 v et = 2g(& ~) (10) 

and the isomorphism between C[AI(M), g] and the exterior algebra over 
A(M) is related by 

eLY = ot A + ia (11) 

Hence if or, 13 E AI(M), then 

eL v f~ = ~ A f~ + ia[3 = eL A [~ + g(rL, ~ )  (12) 

L e m m a  3: 

Proof." 

fl = e ~ v V %  

e ~ v V x ,  = e ~ ^ Vx~  + i2gVx  ~ [from (12)] 

= d - ~ (from Lemmas 1 and 2) 

=r 

Using Lemma 3, we can write the Kahler equation (5) as 

e ~ v V x ~  = mqb 

Now we write 

and define 

(13) 

- % ( x y i r  (15) Vx j c j, 

e" v f j  ---- ~//~'f7 (1 6) 

where ~q are real-valued functions on M, and j~j is the matrix basis. 

qb = ~ ~03}j (14) 
t , j  
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t~J'(X~) play the role of the connection coefficients, and "u is a constant. 
Using the K~ihler equation given in the form (13), we get 

OF 

where 

and 

e~v (~ij (X~doij)f.j + ~ij doijVxjij) = m ~ij doijfj 

(Xpot i )y  ~ q- wlr = molt,  

(Sp~xi)Y ~ q- V 3 = m X r  , 

(X~f3i)y~ + V~ = mf3r'~ 
(Xp.pi)y~ + V 4 = m% j 

(17) 

(18) 

i'p X I* Wr p ~ [O~il~l:?(Xb~) .q_ ~it[l~(Sp~) _~_ Xil~.4~(Xbt) qt_ pil~Ji 4 ( I*)]'Yi'r (20) 

The term VPr represents the interaction term, and in the case when it is 
switched off, the Kahler equation (18) for the four spinors decouples into 
four copies of the Dirac equation. It is worth mentioning here that the K~le r  
equation might be more appropriate when discussing spinor fields and their 
relation to gravitation. An arbitrary K~hler field dO on space-time has 16 
complex components, whereas a Dirac spinor of the complexified Clifford 
algebra has only four complex components. Thus a general solution of the 
Kahler equation has more degrees of freedom than a solution to the Dirac 
equation. This raises the question of the significance of using the K~ihler 
equation for the description of particles in nature such as the electron-positron 
field that are conventionally described by the Dirac equation. 

As the real Clifford algebra, C(M) is isomorphic to a real 4 X 4 matrix 
algebra. It may be decomposed into four minimal left ideals characterized 
by a complete set of four minimal rank (primitive) idempotent projectors 
(Pj) such that 

Piv  Pj = Pi~ o i not summed (21) 

i.e., they are pairwise (orthogonal) under Clifford multiplication v. The 
idempotent projectors satisfying (21) are given by 

1 1 
PI = ~ [(1 + e~ + el)I, P2 = ~ [(1 - e~ + el)] 

(22) 
1 1 

P3 = ~ [(1 + e~ - el)], P4 = ~ [(1 - e~ - el)] 

One can easily check that the above projectors satisfy (21), and also s Pi 

O~i ~ (~)il, ~i ~ (~i2, Xi =- doi3, Pi = doi4 (19) 
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Table I. The Matrix Basis ~j Constructed from the Four Projectors 

j = l  j = 2  j = 3  j = 4  

i = 1 PI PI e~ PI e3 Pi e~ 
i = 2 P2 e~ P2 P2 e~ P2 e3 
i = 3 P3 e3 P3 e~ P3 P3 e~ 
i = 4 P4e ~ P4 e3 P4 e03 /~ 

= 1. If we denote by Sp(qb) the p- form component of ~,  then the primitivity 
of  each Pi implies 

P: v qb v Pj = 4So(qb v Pj)Pj (23) 

where the So projects the 0-form out of  the parenthesis. Since C(M) is a total 
matrix algebra, it is possible to construct a basis j~j e F[C(M)], i, j = 1, 2,  

3, 4, that satisfies 

f~ v Jji' = 3~i' no j sum implied and j~j v f.,i, = 0 Vj ~ i' (24) 

that is, the 3~j have the algebra of  an ordinary matrix basis. Now the left- 
hand side of  (15) can be written as 

V x ~ j  = ~ 4So(ffi,VxJ~j)f/7, (25) 
i' ,j' 

The basis f j  constructed from the four idempotent projectors satisfying (24) 
are given in Table I. 

Since e ~ v 3~j -= ~/~'f/7, 

e I v A l  = ~/[i 'J~'l  = ~ / l l f l l  + ~ /12AI  -t- "~3f31 -~- "~14f41 ( 2 6 )  

or "/11 = 1 and ~/12 = ' ~ 3  = " ~ 4  = 0 because e 1 v f l  1 = f l l .  Similarly, when 
i = 2, then ~12 = 1 and "vl 1 = "vl 3 = '~14 ~--- 0. For i = 3, we have '~13 = 

- 1  and "/11 = ~ 2  = "Y~4 = 0. Finally, when i = 4, we get "Y14 = - 1  and 
741t = "Y412 = ~)~3 = 0. Therefore,  when Ix = 1, then 7~i' can be written as a 
4 • 4 matrix, i.e., 

(i0 0 @_= 1 0 
0 - 1 (27) 

0 0 1 
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By following the same procedure in obtaining ,,/1, we get 

- 1  0 
1 0 0 

~ 3 :  0 0 1 
0 0 

- I  0 ( 00 i) yo = 0 - 1 
1 0 

1 0 0 

The above matrices satisfy 

y~y~ + y~y~ = 2,q~ ~ ] 
,,/or = _,yo (.y,,)2 = 1 
ynt _~. ~ln (yO)2 = _ 1 

where n = 1, 2, 3 and t denotes transpose of the matrix. 

(28) 

(29) 

4. THE 13 SPINORS IN RNC 

The aim of this section is to obtain the dynamic equations for the K~hler 
spinors [3, in RNC when they are subjected to the interacting term Vr 2. The 
connection 1-form (to order of t 2) in terms of RNC is given by 

/2 P̂~ k 1 
f~ ~ = ~ R ~kt~ d~ (30) 

where/~%~1 -- R%kz(t = 0) ~ A~ and l - l~  ~ A1(M). Making use of (4), 
we can compute the connection coefficients in RNC; for example, let us find 
1212(X1). From (30), we obtain 

t 2 
f l  12(Xl) = ~- Rl21cl{kd~l(x1) (3 1) 

or  

t 2 
~'~ 12(X1 ) = ~- [kl2ko~kd~~ -.]- /~12~l~kd~!(Xl) ] (32) 
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Table II. (24/Rt)O~,(XO 

(24/Rt)~,(Xt) 

v = 0  v = l  v = 2  v = 3  

p~ = 0 0 t ~ 0 0 
Ix = 1 - 6  ~ o - 6  2 - 6  3 
IX = 2 0 ~2 0 0 
Ix = 3 0 ~3 0 0 

where  l = 0, l and l = 1, 2, 3. Using  (4) impl ies  that 

~"~12(Xl) = ~- kl2k0~ k 61 + R 2q~ t - + k~-t~l) 
(33) 

t 
= ~ [k~2ko~X~~ ~ + /~12~t~k + /~12~/~kX~-~q 

In this p rob lem we restr ict  ourselves to the space- t ime  o f  constant  
curvature because  it is the only  one for which  we m a n a g e d  to f ind spinorial  
solut ion to the Kfihler spinors  [3i. The  space- t ime metr ics  o f  constant  curvature 
are character ized by  the condi t ion  (Hawking  and Ell is ,  1973) 

R ~ k  t = R ( ~ } ,  _ ~}~,) (34) 

Using  (34), we f ind that equat ion (33) becomes  

Rt 
= - ~ o ~ ) ~  x~ ~ + ( ~ ,  - ~ I ~ ) ~  ~ + ( ~  - ~ )~)~kx~;~ ' ]  ~-~12(Xl ) 2-4 [ (~1~2 0 1 2 k 0 1 1 2 1 2 

_ R t  ~2 ( 3 5 )  
24 

Similarly,  one can compute  all  the remaining  63 connec t ion  coeff icients  in 
RNC.  The results of  these computa t ions  are g iven  in Tables  II-V.  

Table III. (241Rt)O~(X2) 

( 2 4/ Rt ) Uz~o( X2) 

v = 0  v = l  u = 2  v = 3  

IX = 0 0 0 ~o 0 
~ =  1 0 0 ~1 0 
IX = 2 - t  ~ -~' 0 _~3 
Ix = 3 0 0 63 0 
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Table IV. (24/Rt)I2~(X3) 
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(24/Rt)O~.(X3) 
v = O  v = l  v = 2  v = 3  

= 0 0 0 0 ~o 
IX= 1 0 0 0 ~ 
~z = 2 0 0 0 ~2 

= 3 _~o _~1 _~2 0 

Table V. (24/Rt)f~(Xo) 

(24/Rt)ff~.(Xo) 
v = O  v = l  v = 2  v = 3  

Ix = 1 ~l 0 0 0 
Ix = 2 ~2 0 0 0 

= 3 ~3 0 0 0 

From Tables II-V it is clear that the connection coefficients are functions 
of the geodesic distance and the geodesic coordinates, and if we define 

t~j' (X~) =- ~ f  (X~) (36) 

In this paper we shall seek a spinorial solution to the [3i spinors. From (18) 
we have 

(X~[3i)y~ + tVZ~ = m[3r (37) 

where 

- -  + + x i G 2 ( x . )  + oi 2(x )ly r (38) 

When Vr 2 r O, we shall expand the solution in a power series of the 
geodes ic  distance t around t = O, so w e  assume that, for s o m e  M i n k o w s k i  
four-vector k, 

[3i(~, t) ~--- [3~~ -]- /[3}1)(~, k) q- t213}2)(~, k) + t313}3)(~, k) -[- " . .  (39)  

with k~k,. = - m  2. For simplicity we shall define [3} ~ =-- [3}~ [3} l) --= 
[3~)(~, k), and [312) ~ [3}z)(~, k). Here [31~ are arbitrary constant spinors 
which satisfy the flat space-time Dirac equation for a particle with mass m. 
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Using (3), we find that equation (37) gives 

[013} l) a~} 2) a[3}3)]y]r 
__X{,[~}l) _1_ 2tl3}2) + 3t213}3)lyl~ + L-5~ + t - - ~  + t 2 -~--.] 

x { o d [ ~  + aN 2' oag)q + t--~-_l + t2 ~ _ / ] Y 5  -- ~.{2[~!1) _1_ 2t~}2) + 3t213!3)]y2 r 

[ O~:l) 0~!2) t a ON3q 3 
- )t{3113} l) + 2g[3} 2) + 3t2N3qy?r + [_ O{ 3 + t - ~  + 0{ 3 ]% 

+ t---~-; + P o~;  ]~3r 

-x{Od ~ +  aN 2~ [o{- + F a13!sq o t ~ 06l_ J~ir 

-}- ~.{0113!1) -~ 2t[3~ 2) + 3t213!3)ly~ r 

+ {(,~!o~ + to,!~ + t~l,_~ + . . . ) g ~ ? ( x p  

+ (13! ~ + tN'~+ t~13! ~ + .-.)t~;](x,,) 
q- (X! O) -~- tX} 1) --~ t2X! 2) + .-.)ttl~2(Xp.) 
nt. (p!0) _{_ 1~}}1)_~ 12p}2) -I- "" ")~42(Xlx)}y~r 

= m[13~ ) + t ~  1) q- t213~ ) + t3139 )1 (40) 

Equation (40) is the K ~ l e r  equation for the 13i spinors in RNC. This work 
is to order t2; therefore we shall not consider any higher iterations of [313). 
Then by equating like powers of t in (40), we obtain 

~ } 1 )  = m[3(r o) (41)  

where 

_= 

and similarly 

] a + xg2d~_ ' _ x~ ~ ~,~ 

(42) 
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where 

and 
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(43) 

~ ~ m[3~r t) - V~(O) (44) 

~ ( o )  - [.l~ + ~i~ + x?>~::~(x~) 
(45) 

. SPINORIAL S O L U T I O N  TO THE K A H L E R  EQUATION 

Now let us examine the solutions to the [3i K~ihler spinor in space-time 
of constant curvature. Define 

ff'n ~ ~ _]._ ~k~n~l --  h~"  (46) 

Since 77r = %", and 7~ = -~~ equation (41) can be written as 

[ )] ~lliPl _~_ ,y2i~-r .qt_ ,~3i~3 __ ~tri -- P [3! ~) = m[3~ ~ (47) 

Now by making use of the ",/matrices (27) and (28), we find that equation 
(47) becomes 

~l~tl ) _~_ ~3~1) __ i~2~1) + k~O~/ ~ /  __ k~O ~1) = m ~ )  

Pl[3~l)- ff21~')-  (~k{0~/~_/- h{0)[~l ) -  /~313~1) = m[~ 0) 

(48) 
/~'313t l) + k~~ ~_t - k~o 13~ l) - /Y213~1) - fl13~') = m[3~ ~ 

( o  ) ~k~0~/ ~ /  __ ~k~0 ~tl) _~_ /ff'2~tl ) + p[~l )  .j_ p l~ l )  = _m[3~0) 

Equation (48) represents four partial differential equations for the first itera- 
tions of the spinors [3t 1) . . . . .  [3~ 1), and each of these spinors is a function of 
the geodesic coordinates. By a process of  elimination among these four 
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equations, we can solve for {3t 1), {3[ l), 13~ 1), and ~x) individually as follows: 

m ~3~0) {39) = 7 [~'~l~ + + (~o _ ~2)t3~o) ] 

$~,) = _ m  [ _ ~ o )  + ~3~o) + (~2 + ~0)13~o) ] 
4 

(49) m 
t3S~) = 7 [~3{3t~ - ~l{3S~ + (~o _ ~2)13~o) ] 

m ~3~0) 

Equation (49) represents the first-order spinors {3!o and we notice that the 
solutions are written in terms of the [3! o) spinor components and excluding 
any mixture of the remaining spinors. In the massless case these spinors 
vanish and the K ~ l e r  field propagates as though in Minkowski space-time. 

Now we define 

F" = 5-~ + X~"~: - 2X~" (50) 

Here n = 0, 1, 2, 3 and l = 1, 2, 3. If we assume that R = 12m 2 and use 

equations (44) and (45), the {3}2) spinors (43) give rise to the following system 
of four coupled partial differential equations: 

{ o } 
Fl~3t z) + F3f3f ) - Fz~2)  + h{~ - 2X{o 1312) 

= M[({~ + {o)(~o) _ xtO)) + ({~ + {3)edo) + 2~([3to) _ x~o)) 

+ 2~3{3~o) _ (~o + 3~2)[3~o) _ ~3plO) + ~,p~O)] ( 5 1 )  

_ _ ~ ~-/0 _ 2X.,{jO}[3~2 ) . ,  _ FI[~ 2) F213~ 2) [.X.{0{ -/ F313~ 2) 

= M[(~/3 _ ~l)u~o) _ (~/2 + {o)(edo) + x~O)) + 2~j{3to) 

+ (3~o _ ~2)13~o) _ 2,~313~o) _ ~3p~,O) _ ~,p~O)] ( 5 2 )  

= M[(~ 2 + ~~176 + X~ ~ + (~  + ~3)ct~~ + 21~313~ ~ 

+ (~o _ 3~2)[3~o) _ 2r + X~o)) + ~,ptO) + ~3p~o)] (53) 
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{)t~%-/~_/ - 2~k6~ 2)+ F213t2)+ F313~ 2) + FI[3~ 2) 

= M[(61 - 63)otto) + (62 + 6~ ~ - x~O)) 
+ (~2 _ 36o)~Io) + 2~3[~o) + 26,~o) + 6logO) _ ~3p~O)] 

where M = R/48 and solutions to (51)-(54) are given by 

13~ 2) = B 2{1{ 2 + ~ + 

+ {(62) 2 

+ {(6~) 2 

+ 

+ 26163 + (~3) 2 -  (~0)2--3}0~0) 

+2~'~3--1}0t~0)+ {3(~1)2 + 

16 20 ~2~o 2} 5 
T (~o)~ _ T - ~I~ - ~ ~(6~ 

10~1(~2 + 6o)Xto) _ ~.2 61~3x~O) ..}_ { 4  ~ (61) 2 

5 + ~ ~,(~: + ~o)~o) 

4 (62) 2 -l- 3(~3) 2 

+ ~o)~o) 

- ~ (62): + ~ (60) 2 x~~ 

+ 5  (62 -F 5~0)(6113~ O) -- ~3[3t0) ) 

{ 1 + 2(~I)2 + ~ (~2)2 + 2(~3)2 _ 3 (~o)2 + _ ~o) 

383 

(54) 

(55) 



+ 
I 

§ 
I 

+ 
§ 

~ 

~J
 

+ 
~ 

~ 

II § t~
 I I 

§ 
i 

L
~ I 

I 

~J
 

I 
] 

i 
+ 

-t-
 

+ ~r
r 

~-
~ 

it-
 

~ 
~-

 
I ~

 
~ 

~ 
~

1
~

 
§ 

H
 

i 
i 

~ 
+ 

~ 
+ 

+ + 
~ 

~ 
~o

 



Clifford Algebra and Propagation of K~ihler Spinors 385 

12 
+ 5-  ~3(~2 + ,~o)• 

_ 2~({2 + ~0)p~0)] (58) 
3 

where B = m2/40. For the massless case, the ~l)  and 13~ 2) equations will 
vanish. Therefore, the only ones surviving are those of zero order, [3} ~ The 
existence of (nonzero) higher iterations [3~ ~) and [3! 2~ indicates the presence 
of a gravitational field, which these equations could be used to study, and 
the Kahler spinors could be used as a probe of space-time curvature. In the 
case of the absence of gravitational field, i.e., when the interaction term 
VPr = 0, the Kghler spinors propagate as though in Minkowski space-time. 
Thus the Kahler equation may be decoupled into four sets of equations, one 
for each four-dimensional minimal left ideal (MLI). Therefore, in the absence 
of the interaction term in each set [equation (18)] the components of the MLI 
are coupled in a way that is isomorphic to the coupling between the four 
components of a spinor that satisfies the Dirac equation. It is worth mentioning 
here that the K~ler  spinors ai, [3i, • and p; propagate independently in 
curved space-time, due to each one of them being subjected to different 
interaction terms. For instance, the ai spinor is subjected to a Vr ~, and the [~i 
spinor will be subjected to a different interaction term, which in this case is 
V 2, and so on for the remaining spinors. This of course will alter the connection 
coefficients for each individual spinor and in turn gives rise to completely 
different structure equations describing the spinor in question. Therefore, 
each spinor will give rise to a different set of partial differential equations 
which in turn requires different techniques in solving these equations. The 
only common feature these spinors possess is that in the absence of the 
interaction term, they will give rise to an identical copy of the Dirac equation. 

In conclusion we have shown in this paper how the propagation of the 
K~le r  spinors [3i is affected by the presence of an interaction term in space- 
time of constant curvature. This has been achieved by making use of the 
isomorphism between the real Clifford algebra and the total matrix algebra 
M4, which enables us to write the Kahler field in terms of a sum of spinors. 
The framework set up in this paper can serve as a starting point for calculating 
and extending the work to higher order in the Riemann curvature tensor. This 
analysis may be of relevance in any model attempting to relate spinor solutions 
of the Kahler equation to a quantum gravity context. 



386 Talebaoui 

R E F E R E N C E S  

Ablamowicz, R., and Salingaros, N. (1985). Letters in Mathematical Physics, 9, 149. 
Ablamowicz, R., Oziewicz, Z., and Rzewski, J. (1982). Journal of Mathematical Physics, 

23, 231. 
Banks, T., Dothan, Y., and Horn, D. (1982). Physics Letters B, 117(15), 343. 
Basarab-Horwath, P., and Tucker, R. W. (1986). Annales de l'Institut Henri Poincar~, 45, 79. 
Becher, P., and Joos, H. (1982). Zeitschriftfiir Physik C. Particles and Fields, 15, 343. 
Benn, I. M., and Tucker, R. W. (1983). Communications in Mathematical Physics, 89, 341. 
Brihaye, Y., et al. (1992). Journal of Mathematical Physics, 33, 1579. 
Budinich, P., and Dabrowski, L. (1985). Letters in Mathematical Physics, 10, 7. 
Chevalley, C. C. (1954). The Algebraic Theory of Spinors, Columbia University Press, New York. 
Cho, H. T., Diek, Adel, and Kantowski, R, (1990). Journal of Mathematical Physics, 31, 2192. 
Crawford, J. P. (1991). Journal of Mathematical Physics, 32, 576. 
Dolgov, A. D., and Khriplovich, I. B. (1983). General Relativity and Gravitation, 15, 1033. 
Eisenhart, L. P. (1949). Riemannian Geometry, Princeton University Press, Princeton, New 

Jersey. 
Finkelstein, D., and Rodriguez, E. (1986). Physica, 18D, 197. 
Fradkin, E. S., and Shvartsman, S. M. (1992). Classical and Quantum Gravity, 9, 17. 
Graf, W. (1978). Annales de l'Institut Henri Poincard, 85, 85. 
Hawking, S. W., and Ellis, G. E R. (1973). The Large Scale Structure of Space-Time, Cambridge 

University Press, Cambridge. 
Hitchin, N. (1974). Advances in Mathematics, 14, 1. 
K~ler, E. (1962). Rendiconti di Matematica (3-4), 21, 425. 
Kawamoto, N., and Watabiki, Y. (1992). Physical Review D, 45, 605. 
Kobayashi, S., and Nomizu, K. (1963). Foundations of Differential Geometry, Vol. I, Inter- 

science, New York. 
Kobayashi, S., and Nomizu, K. (1969). Foundations of Differential Geometry, Vol. II, Inter- 

science, New York. 
Maia, A., et al. (1990). Journal of Mathematical Physics, 31, 502. 
Manasse, F. K., and Misner, C. W. (1963). Journal of Mathematical Physics, 4, 735. 
Manko, V. S., and Sibgatullin, N. R. (1992). Physical Review D, 46, 4122. 
Modanese, G. (1992). Journal of Mathematical Physics, 33, 4217. 
Ni, W. T., and Zimmerman, M. (1978). Physical Review D, 17, 1473. 
Parker, L. (1980). Physical Review D, 22, 1922. 
Parker, L., and Pimentel, L. O. (1982). Physical Review D, 25, 3180. 
Penrose, R., and Rindler, W. (1987). Spinors and Spacetime, Cambridge University Press, 

Cambridge, Vols. 1 and 2, and references therein. 
Rabin, J. M. (1982). Nuclear Physics B, 201, 315. 
Salingaros, N. (1982). Journal of Mathematical Physics, 22, 226. 
Salingaros, N., and Dresden, M. (1979). Physical Review D, 43, 1. 
Talebaoui, W. (1993). Physics Letters A, 178, 217. 
Talebaoui, W. (1994). Journal of Mathematical Physics, 35, 1399. 
Talebaoui, W. (n.d.). Fundamental calculations in Riemannian normal coordinates, Journal of 

Algebra, Groups and Geometries, to appear. 


